HOMEWORK # 2

MARIUS IONESCU

Problem 1 (Exercise 1.4.2 on page 27). Recall that \mathbb{I} stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$, then ab and a + b are elements of \mathbb{Q} as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a + t \in I$ and $at \in \mathbb{I}$ as long as $a \neq 0$.
- (c) Part (a) can be summarized by saying that \mathbb{Q} is closed under addition and multiplication. Is \mathbb{I} closed under addition and multiplication? Given two irrational numbers s and t, what can we say about s + t and st?

Problem 2 (Exercise 1.4.4 on page 27). Use the Archimedean Property of \mathbb{R} to rigorously prove that $\inf\{1/n : n \in \mathbb{N}\} = 0$.

Problem 3 (Exercise 2.2.1 on page 43). Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

(a)
$$\lim \frac{1}{(6n^2+1)} = 0$$
.

(b)
$$\lim \frac{3n+1}{2n+5} = \frac{3}{2}$$

(c)
$$\lim \frac{2^{n+2}}{\sqrt{n+3}} = 0$$

Problem 4 (Exercise 2.2.2 on page 43). What happens if we reverse the order of the quantifiers in Definition 2.2.3?

Definition: A sequence (x_n) verconges to x if there exists an $\varepsilon > 0$ such that for all $N \in \mathbb{N}$ it is true that $n \ge N$ implies $|x_n - x| < \varepsilon$.

Give an example of a vercongent sequence. Can you give an example of a vercongent sequence that is divergent? What exactly is being described in this strange definition?

Problem 5 (Exercise 2.2.6 in page 43). Suppose that for a particular $\varepsilon > 0$ we have found a suitable value of N that "works" for a given sequence in the sense of Definition 2.2.3.

- (a) Then, any larger/smaller *pick one*) N will also work for the same $\varepsilon > 0$.
- (b) Then, this same N will also work for any larger/smaller value of ε .

MARIUS IONESCU

Problem 6 (Exercise 2.2.7 on page 45). Informally speaking, the sequence \sqrt{n} " converges to infinity."

- (a) Imitate the logical structure of Definition 2.2.3 to create a rigorous definition for the mathematical statement $\lim x_n = \infty$. Use this definition to prove $\lim \sqrt{n} = \infty$.
- (b) What does your definition in (a) say about the particular sequence $\{1, 0, 2, 0, 3, 0, 4, 0, 5, 0 \dots\}$?

 $\mathbf{2}$