Name:

You must show your work and justify your answers to receive full credit.

#	Points	Score
1	16	
2	16	
3	17	
4	17	
5	17	
6	17	
Total	100	

Spherical Coordinates

$$x = \rho \sin \phi \cos \theta$$
,

$$y = \rho \sin \phi \sin \theta,$$

$$z = \rho \cos \phi$$

1. Let

$$g(x, y, z) = \sqrt{2x^2 + y^2 + 4z^2}.$$

- (a) Describe the shapes of the level surfaces of g.
- (b) In three different graphs, sketch the three cross sections to the level surface g(x, y, z) = 1 for which

i.
$$x = 0$$
,

ii.
$$y = 0$$
,

iii.
$$z = 0$$
.

In each cross section, label the axes and any intercepts.

- (c) Find the equation of the plane tangent to the surface g(x,y,z)=1 at the point $\left(\frac{1}{2},\frac{1}{2},\frac{1}{4}\right)$.
- 2. An assortment of TRUE/FALSE or short answer questions:
 - (a) TRUE or FALSE: If f(x, y) is defined for all (x, y), $\lim_{x\to 0} f(x, 0) = 0$, $\lim_{y\to 0} f(0, y) = 0$, and f(0, 0) = 0, then f is continuous at (0, 0).
 - (b) TRUE or FALSE: If f is differentiable at (0,0), then f is continuous at (0,0).
 - (c) TRUE or FALSE: If f is a continuous function defined on the region $x^2 + y^2 \le 9$, then f has a maximum value and a minimum value in this region.
 - (d) TRUE or FALSE: If $f_x(0,0)$ exists, and $f_y(0,0)$ exists, then f is differentiable at (0,0).
 - (e) TRUE or FALSE: If f is differentiable at (0,0), then the tangent plane to the graph of f at (0,0) is given by $z = f(0,0) + f_x(0,0)x + f_y(0,0)y$.
 - (f) Give an example of a function f(x,y) for which (0,0) is a local minimum, but for which the second derivative test fails to determine this classification.
 - (g) Give an example of a function g(x,y) which is differentiable everywhere except along the line y=x.
 - (h) Let $H(x,y) = x^2 y^2 + xy$, and suppose that x and y are both functions that depend on t. Express $\frac{dH}{dt}$ in terms of x, y, $\frac{dx}{dt}$ and $\frac{dy}{dt}$.

3. Suppose f is a differentiable function such that

$$f(1,3) = 1$$
, $f_x(1,3) = 2$, $f_y(1,3) = 4$,

$$f_{xx}(1,3) = 2$$
, $f_{xy}(1,3) = -1$, and $f_{yy}(1,3) = 4$.

- (a) Find $\operatorname{grad} f(1,3)$.
- (b) Find a vector in the plane that is perpendicular to the contour line f(x, y) = 1 at the point (1,3).
- (c) Find a vector that is perpendicular to the surface z = f(x, y) (i.e. the graph of f) at the point (1, 3, 1).
- (d) At the point (1,3), what is the rate of change of f in the direction $\vec{i} + \vec{j}$?
- (e) Use a quadratic approximation to estimate f(1.2, 3.3).
- 4. Let

$$f(x,y) = x^2 - 4x + y^2 - 4y + 16.$$

- (a) Find and classify the critical points of f.
- (b) Find the maximum and minimum values of f subject to the constraint

$$x^2 + y^2 = 18$$

(c) Find the maximum and minimum values of f subject to the constraint

$$x^2 + y^2 \le 18$$

(d) Approximate the maximum value of f subject to the constraint

$$x^2 + y^2 = 18.3$$

(Explain your answer in terms of Lagrange multipliers.)

5. Suppose the integral of some function f over a region R in the plane is given in polar coordinates as

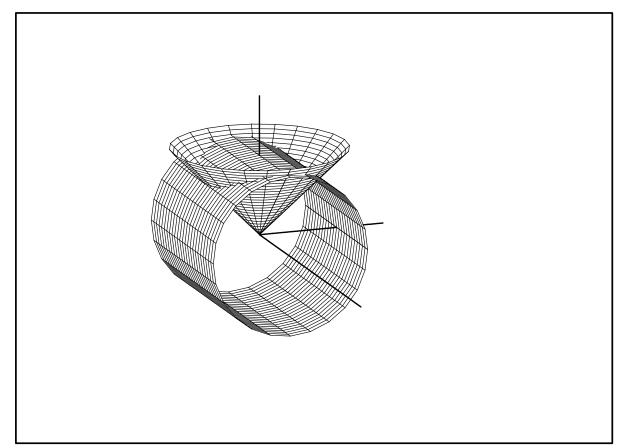
$$\int_0^3 \int_0^{\frac{\pi}{2}} r^2 \, d\theta dr.$$

- (a) Sketch the region of integration R in the xy plane.
- (b) Convert this integral to Cartesian coordinates.
- (c) Evaluate the integral. (You may use either polar or Cartesian coordinates.)

3

(d) What is the average value of f on the region R?

6. Let W be the solid region above the cone $z=\sqrt{x^2+y^2}$ and inside the cylinder $y^2+z^2=1$.



Express the volume of W as a triple integral in

- (a) spherical coordinates, and
- (b) Cartesian coordinates.

Do not evaluate the integrals!