
Math 308 Differential Equations Fall 2002

Homework 1 Solutions

Text Problems

1.1/4.

(a) The statement of the problem says t is time, but it does not specify the starting point. I will define t
to be the number of years since 1939. Then the initial condition, given by the first entry in the table,
is A(0) = 32800.

As shown in Section 1.1 (and subsequently shown in class), the solution to the differential equation is

A(t) = A0e
kt,

where A0 is a constant. To find A0, we use the initial value:

A(0) = A0e
0 = A0 = 32800.

so the solution to the initial value problem is

A(t) = 32800ekt.

(b) If the data agrees with the model, we can use any data point (except for the first) to determine k. I
will try the model with two values of k, determined by two different data points.

To find k1, I will use the second data point: A(5) = 55800. Thus

A(5) = 32800e5k1 = 55800 =⇒ e5k1 =
55800
32800

=⇒ k1 =
1
5

ln
(

55800
32800

)
= 0.10626907 . . .

To find k2, I use the last data point, A(35) = 584000. We find

k2 =
1
35

ln
(

58400
32800

)
= 0.082270641 . . .

(c) Here is a table that shows that actual data, and the predictions of the model with k = k1 and k = k2.
Only three significant digits are shown for the predictions.

Predicted Predicted
Year t Actual with k = k1 with k = k2

1939 0 32,800 32,800 32,800
1944 5 55,800 55,800 49,500
1949 10 73,600 94,900 74,700
1954 15 138,000 161,000 113,000
1959 20 202,000 275,000 170,000
1964 25 257,000 467,000 257,000
1969 30 301,000 795,000 387,000
1974 35 584,000 1,350,000 584,000
2010 71 6.20× 107 1.13× 107

2050 111 4.35× 109 3.03× 108

2100 161 8.84× 1011 1.86× 1010
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(d) The following graph compares the actual data with the models for 0 ≤ t ≤ 35.
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With k = k1, the predictions are significantly larger than the the actual data. The model does not
appear very good, and it would not be prudent to believe the predictions for 2010, 2050, and 2100,
especially since the model gives areas that exceed the area of Australia!

With k = k2, the model appears more reasonable for the time 0 ≤ t ≤ 35. However, this model also
predicts that the area will exceed the area of Australia by 2010, so we still can’t believe the predictions.

It appears that the equation dA
dt = kA is not a good model. A model based on the logistic equation

might be better.

1.1/8.

(a) We will use the notation given and translate the verbal description of the behavior into a mathematical
equation. First, “the rate at which a quantity of a radioactive isotope decays” refers to dr

dt ; the word
“decay” suggests that we expect the rate of change of r(t) to be negative. The description says that the
rate of change is proportional to the amount present, which is just r(t). The proportionality constant
is what the problem statement calls “−λ”. Thus the equation is

dr

dt
= −λr(t).

(b) The statement “the amount of the isotope present at t = 0 is r0” translates directly into r(0) = r0, so
the initial value problem is

dr

dt
= −λr(t), r(0) = r0.

1.1/9. First, some general comments about half-life. We know that the amount of an isotope is determined
by the equation dr/dt = −λr(t). The solution to this first order differential equation is r(t) = r0e

−λt, where
(as in the previous problem) r0 is the amount present at t = 0. Let T be the half-life of the isotope;
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this means that it takes T units of time for a quantity of the isotope to decay to half its original amount.
Mathematically, this says r(T ) = r(0)/2 = r0/2. But r(T ) = r0e

−λT , so T must satisfy

r0e
−λT =

r0

2
,

or, canceling r0,

e−λT =
1
2
.

In parts (a) and (b) of this question, we are given T and asked to find λ. By solving the above equation for
λ, we obtain

λ = − ln
(

1
2

)

T
=

ln 2
T

.

(a) λ =
ln 2
5230

≈ 1.325× 10−4.

(b) λ =
ln 2
8
≈ 0.08664.

(c) In (a), the units of λ are year−1 (in other words, “per year”), and in (b), the units of λ are day−1.

(d) We will get the same answer. Note that in the comments above, r0 drops out of the equation, so the
half-life does not depend on the initial amount.

1.1/12.

(a) From Exercise 9, we know that the half-life of I-131 is 8 days, and the decay-rate parameter is λ =
0.08664 day−1. Since r(t) = r0e

−λt, where r0 = r(0), the fraction remaining after t days is r(t)/r(0) =
e−λt. In three days (i.e. 72 hours), the fraction remaining is

r(3)
r(0)

= e−(0.08664)(3) ≈ 0.7716,

so there will be about 77 percent remaining.

(b) The fraction remaining after 5 days (72 hours for shipping, plus 48 hours of storage) is

r(5)
r(0)

= e−(0.08664)(5) ≈ 0.6491,

so there will be about 65 percent remaining.

(c) Since eλt 6= 0 for any t, according to the mathematical model, the I-131 will never completely decay.

In practice, the amount remaining will eventually be so small that any remaining radioactivity will
be less than the background radiation to which we are continuously exposed. However, I am not a
radiologist, so I can’t say when the remaining I-131 “can be thrown away without special precautions.”

1.1/14.

(a) In this case, the model is

dP

dt
= k

(
1− P

N

)
P − 100

= 0.3
(

1− P

2500

)
P − 100
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Let’s plot dP/dt vs. P :

dP/dt vs. P
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The equilibria are P ≈ 396 and P ≈ 2104. For P > 2104, we see that dP/dt < 0, which tells us that
P will decrease. In fact, P (t) will continue to decrease towards the equilibrium at P ≈ 2104. In other
words, in the long-term we expect the population to level off at about 2104.

(b) In this case, the model is

dP

dt
= k

(
1− P

N

)
P − P

3

= 0.3
(

1− P

2500

)
P − P

3

and the plot of dP/dt vs. P is:

dP/dt vs. P
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The equilibria are P = 0 and P = −2500/9 ≈ −278. Of course, negative values of P are not relevant
for the model, but this does tell us that dP/dt < 0 for all P > 0. This means that for any starting
population P (0) (including the case P (0) = 2500), P (t) will decrease towards zero. In the long-term,
the population will die out.

1.2/ 16.
Separate:

y dy = t dt

Integrate:
y2

2
=

t2

2
+ C
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Solve for y(t):
y = ±

√
t2 + 2C.

Note that this means there are two families of solutions: y =
√

t2 + 2C and y = −√t2 + 2C. If an initial
condition were given, it would determine the sign of the solution, and the value of C.

1.2/ 18.
We have

dy

dt
=

1
ty + t + y + 1

=
1

(t + 1)(y + 1)
=

(
1

t + 1

)(
1

y + 1

)
.

Now separate:

(y + 1) dy =
dt

t + 1
Integrate:

y2

2
+ y = ln |t + 1|+ C1

Solve for y:

y2

2
+ y − ln |t + 1| − C1 = 0

y = −1±
√

1 + 2 ln |t + 1|+ 2C1

or
y = −1±

√
2 ln |t + 1|+ C2

where C2 = 1 + 2C1.

1.2/ 26.
We have

dy

dt
= ty2 + 2y2 = (t + 2)y2

Separate:
dy

y2
= (t + 2) dt

Integrate:

−1
y

=
t2

2
+ 2t + C

We can use the initial condition y(0) = 1 (that is, y = 1 when t = 0) to determine C:

−1
1

= 0 + 0 + C =⇒ C = −1

So we have

−1
y

=
t2

2
+ 2t− 1

Solve for y:

y =
−1

t2

2 + 2t− 1
=

−2
t2 + 4t− 2
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1.2/ 34.
Separate:

(2y + 3) dy = dt

Integrate:
y2 + 3y = t + C

Use the initial condition y(0) = 1 to find C:

1 + 3 = 0 + C =⇒ C = 4

So we have
y2 + 3y = t + 4

Solve for y:

y2 + 3y − t− 4 = 0

y =
−3±

√
9 + 4(t + 4)
2

=
−3±√4t + 25

2

This is still two possible solutions. We again use the initial condition to determine which is the correct
solution. Since y(0) = 1, we must choose the positive square root. The solution to the initial value problem
is

y(t) =
−3 +

√
4t + 25

2

Additional Problems

1.

(a) Since the air is being pumped into the balloon at 10 cubic centimeters per second, the volume of the
balloon must be increasing at this rate. So, if the volume v is measured in cubic centimeters, and if t
is time, measured in seconds, we have

dv

dt
= 10.

This is the differential equation for v.

(b) Take the t derivative of both sides of the formula v = 4πr3/3. This gives

dv

dt
= 4πr2 dr

dt
.

But, as we showed in (a), dv/dt = 10, so

4πr2 dr

dt
= 10

Solving for dr/dt gives the differential equation for r:

dr

dt
=

10
4πr2

.
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(c) Solving the equation for v is certainly easy enough:

v(t) = 10t + C.

The differential equation for r is separable, and we could following the usual procedure to solve it. Or,
we can solve v = 4πr3/3 for r:

r =
(

3v

4π

) 1
3

Now put in v(t):

r(t) =
(

3(10t + C)
4π

) 1
3

This is the solution to the differential equation for r.

2.

(a) The equation for a(t) is da
dt = −ka, and by now we know that the solution is a(t) = a0e

−kt, where
a(0) = a0. We are told that the patient is given 5 units at t = 0, so a(0) = 5. Therefore, a(t) = 5e−kt.
We are also told that a(24) = 1.2. We use this to find k:

a(24) = 5e−24k = 1.2 =⇒ −24k = ln
(

1.2
5

)

so

k = − 1
24

ln
(

1.2
5

)
= 0.05946318 . . .

(b) Immediately after the second dose, the patient has 6.2 units of drug in the bloodstream: 1.2 units are
left over from the initial dose, and 5 more have been added by the second dose. We can now redefine
time so that t = 0 is the time when the second dose was administered. Then we have a(0) = 6.2, so
a(t) = 6.2e−kt, where k is the same as before. Then 24 hours later, we have a(24) = 6.2e(−0.05946)(24) ≈
1.488. Thus, at the end of the second 24 hours, there are 1.488 units of the drug in the bloodstream.

(c) Let ai be the amount of drug in the bloodstream at the end of day i, just before the next dose of 5
units is given. We were told a1 = 1.2, and in (b) we computed a2 = 1.488. To compute a3, a4, etc.,
we follow the same procedure that we used in (b):

a3 = (5 + 1.488)e−(0.05946)(24) = 1.557,

a4 = (5 + 1.557)e−(0.05946)(24) = 1.574,

and we see that the pattern is
ai = (5 + ai−1)e−(0.05946)(24).

Continuing with the calculations, we find

a5 = (5 + 1.574)e−(0.05946)(24) = 1.578,

a6 = (5 + 1.578)e−(0.05946)(24) = 1.579,

a7 = (5 + 1.579)e−(0.05946)(24) = 1.579.

Thus, when we keep only four significant digits in our calculations, the amount of the drug in the
bloodstream just before each dose converges to the value 1.579. If we kept more digits, the value would
continue to increase, but it would approach a limiting value. We can check this by using the equation
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for ai given above. We look for a “fixed point” of this equation; that is, a value where ai = ai−1. If
we call this value a∗, the equation becomes

a∗ = (5 + a∗)e−(0.05946)(24)

and solving for a∗ gives a∗ = 1.579106 . . ..

In terms of the original problem, (5 + a∗) is precisely the amount of the drug for which the amount
“cleared” during a 24 hour period is 5 units.

The following graph shows the amount of the drug in the bloodstream during the first four days. The
dotted line shows a∗ = 1.579106.
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Note: It is possible to find a formula for ai explicity in terms of i, rather than as the recursion relation
given on the previous page. If r = e(−0.05946)(24) ≈ 0.2400, then

ai = 5r

(
1− ri

1− r

)
.

See me if you would like to see the derivation, but try it yourself first! (It is not difficult, but you
will need the formula for the sum of a finite geometric series.) We can find a∗ by taking the limit as
i →∞. Since 0 < r < 1, ri → 0 as i →∞; thus

a∗ = lim
i→∞

ai =
5r

1− r
≈ 1.2

0.76
≈ 1.579.

8


