
Math 308 Differential Equations Fall 2002

Homework 2 Solutions

1 & 2. See the last page.

3(a). Newton’s second law of motion says that ma = F , and we know a = dv
dt , so we have mdv

dt = F . One
part of the force is gravity, mg. However, we are using the convention that “up” is positive, and gravity
creates an acceleration downward, so the gravitational force is really −mg. In part (a), we are told that there
is a frictional force Fd(v) that depends on v. We know that this force should act in the direction opposite
to the direction of motion, but we are told that Fd(v) < 0 when v > 0, so that is accounted for in Fd. So
the total force is F = −mg + Fd(v). Thus Newton’s second law gives us

m
dv

dt
= −mg + Fd(v),

or
dv

dt
= −g +

Fd(v)
m

.

This is a first order differential equation for v, the velocity of the object.
If the object is released from height y0 at t = 0, the velocity at that instant is zero. Therefore the initial

condition is
v(0) = 0.

3(b). In this case, Fd(v) = 0, and the equation is

dv

dt
= −g.

We can integrate this to obtain
v = −gt + C,

and the initial condition v(0) = 0 gives us C = 0, so

v(t) = −gt.

As t increases, the velocity decreases linearly with t.

3(c). If Fd(v) = −Cdv, the equation for v is

dv

dt
= −g − Cd

m
v.

This equation for v is separable, so we can following the usual steps to solve it:

Separate (assuming v 6= −gm/Cd):
dv

g + (Cd/m)v
= −dt.
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Integrate and solve for v(t). I’ll do this one in detail once more (in the following, exp(x) ≡ ex):

m

Cd
ln |g + (Cd/m)v| = −t + k1,

ln |g + (Cd/m)v| = −Cd

m
t + k2 (where k2 = (Cd/m)k1),

|g + (Cd/m)v| = exp
(
−Cd

m
t + k2

)

= k3 exp
(
−Cd

m
t

)
(where k3 = ek2),

Note that k3 must be a positive constant, because it comes from exponentiating k2. Let’s get rid of the
absolute value. We have two cases: g + (Cd/m)v > 0, or g + (Cd/m)v < 0.

If g + (Cd/m)v > 0, then |g + (Cd/m)v| = g + (Cd/m)v, and the last equation becomes

g + (Cd/m)v = k3 exp
(
−Cd

m
t

)

If g + (Cd/m)v < 0, then |g + (Cd/m)v| = −(g + (Cd/m)v), so we have

g + (Cd/m)v = −k3 exp
(
−Cd

m
t

)

The only difference between these two cases is the minus sign. Now, k3 is a positive constant, so we can
combine these two cases into one formula

g + (Cd/m)v = k4 exp
(
−Cd

m
t

)

where k4 is an arbitrary nonzero constant. And then we observe that if k4 = 0, we have g +(Cd/m)v = 0, or
v = −mg/Cd, which is the equilibrium solution. Thus we can say that k4 is an arbitrary constant (including
the possibility that k4 = 0).

Finally, we solve for v:

v(t) = −gm

Cd
+ k exp

(
−Cd

m
t

)
,

where k is an arbitrary constant. (k is just (Cd/m)k4, and since k4 is arbitrary, so is k.)
We want the solution where v(0) = 0, so

v(0) = −gm

Cd
+ k = 0, hence k =

gm

Cd
.

Thus the solution to the initial value problem in this case is

v(t) = −gm

Cd
+

gm

Cd
exp

(
−Cd

m
t

)
= −gm

Cd

(
1− exp

(
−Cd

m
t

))
.

As t increases, exp
(−Cd

m t
)

approaches zero, so the velocity approaches −gm

Cd
. (This is the terminal velocity.)

3(d). We now assume that Fd(v) = −Cdv|v|. Before proceeding, let’s use a little intuition to make life
easier. If we drop the object, we expect it to fall; the velocity will be zero initially, and then it will become
negative. We expect it to stay negative for t > 0. Therefore, for the solution that we are considering, we
have |v| = −v, and Fd(v) = Cdv

2. The differential equation is then

dv

dt
= −g +

Cdv
2

m
.
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This equation is separable, and we solve it the usual way. That is, we write

dv

−g + Cdv2

m

= dt,

and integrate. While it is not necessary, I’ll first make the coefficient of v2 one:

dv

−mg
Cd

+ v2
=

Cd

m
dt,

For convenience, I’ll define the parameter a =
√

mg
Cd

. (We can do this because m, g, and Cd are all positive.

Note that this is not the same a as the acceleration in Newton’s Law.) We then have

dv

v2 − a2
=

Cd

m
dt, (1)

To integrate the expression on the left, we will use the partial fraction expansion

1
v2 − a2

=
−1

2a(v + a)
+

1
2a(v − a)

.

Then
∫

dv

v2 − a2
=

∫ −dv

2a(v + a)
+

∫
dv

2a(v − a)

= − 1
2a

ln |v + a|+ 1
2a

ln |v − a|

=
1
2a

(ln |v − a| − ln |v + a|)

=
1
2a

ln
∣∣∣∣
v − a

v + a

∣∣∣∣ .

Thus, the result of integrating both sides of (1) is

1
2a

ln
∣∣∣∣
v − a

v + a

∣∣∣∣ =
Cd

m
t + K1.

This gives us ∣∣∣∣
v − a

v + a

∣∣∣∣ = exp
(

2aCd

m
t + 2aK1

)
= K2 exp

(
2aCd

m
t

)
,

or
v − a

v + a
= K3 exp

(
2aCd

m
t

)
.

where, as usual, we absorb the ± into the constant K3. Now solve this for v:

v − a = K3 exp
(

2aCd

m
t

)
(v + a),

(
1−K3 exp

(
2aCd

m
t

))
v = a + K3 exp

(
2aCd

m
t

)
a = a

(
1 + K3 exp

(
2aCd

m
t

))

v =
a

(
1 + K3 exp

(
2aCd

m t
))

1−K3 exp
(

2aCd

m t
)
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Recall that a =
√

mg
Cd

, so we have

v =
√

mg

Cd




1 + K3 exp
(

2
√

gCd

m t

)

1−K3 exp
(

2
√

gCd

m t

)




Now we find the solution for which v(0) = 0:

v(0) =
√

mg

Cd

(
1 + K3

1−K3

)
= 0 =⇒ K3 = −1.

So the solution to the initial value problem is

v(t) =
√

mg

Cd




1− exp
(

2
√

gCd

m t

)

1 + exp
(

2
√

gCd

m t

)




As t increases, the exponentials in this formula become large (much larger than 1), and the expression in
parentheses approaches −1. Thus, as t increases, v(t) approaches −

√
mg
Cd

. Again we see that there is a
terminal velocity.

3(e). In (c), we have the equation dv
dt = −g− (Cd/m)v, so the term (Cd/m)v must have the same units as

dv
dt , which is an acceleration, with units m/sec2. v has units of m/sec, and m has units of kg, so Cd must
have units of kg/sec for (Cd/m)v to have units of m/sec2.

In (d), the term (Cd/m)v2 must have units of acceleration, so in this case, the units of Cd must be kg/m.

4. The logistic equation is
dP

dt
= k

(
1− P

N

)
P.

The equilibria are P (t) = 0 and P (t) = N . Now assume P 6= 0 and P 6= N . We separate to obtain:

dp(
1− P

N

)
P

= k dt.

To integrate the left side, we use the partial fraction expansion:
∫

dp(
1− P

N

)
P

=
∫ (

1
N − P

+
1
P

)
dp = − ln |N − P |+ ln |P | = ln

∣∣∣∣
P

N − P

∣∣∣∣ .

(I haven’t included the constant of integration; this will be included in the constant on the right side.) So
after integrating we have

ln
∣∣∣∣

P

N − P

∣∣∣∣ = kt + C1.

Now solve for P :
∣∣∣∣

P

N − P

∣∣∣∣ = ekt+C1 = C2e
kt,

P

N − P
= C3e

kt
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Note that C2 is a positive constant, while C3 is an arbitrary nonzero constant. As in previous problems, the
±C2 that arises from eliminating the absolute value is absorbed into C3.

With a little algebra, we find solve for P :

P (t) =
C3Nekt

1 + C3ekt
. (2)

We observe that setting C3 = 0 gives us P = 0, which is one of the equilibrium solutions, so in fact we can
allow C3 to be an arbitrary constant, including C3 = 0. However, there is no value of C3 that will give us
the other equilibrium solution P = N , so the general solution is given by (2) or

P (t) = N.

A different (but equivalent) form of the solution is

P =
N

1 + C4e−kt
or P (t) = 0,

where C4 is an arbitrary constant.

5(a). The amount of drug in the bloodstream at time t (in hours) is a(t) milligrams. There are two
processes causing the amount to change:

1. The drug clears at a rate that is proportional to the amount present. We are told that the pro-
portionality constant is 0.2 per hour, so the rate of change of a(t) from the clearing of the drug is
−0.2a(t).

2. The drug is being added intravenously. The concentration of the drug in the solution is 1.4 mg/`, and
the flow rate is 0.1 `/hour, so the rate of change of a is (1.4 mg/`)(0.1 `/hour) = 0.14 mg/hour.

Thus the net rate of change of a(t) is −0.2a + 0.14. This gives us the differential equation

da

dt
= −0.2a + 0.14.

We are told that there is initially no drug in the bloodstream, so the initial condition is

a(0) = 0.

The differential equation and the initial condition are the initial value problem.

5(b). The differential equation is separable; in fact, we solved a more general equation like this in class.
We find the general solution to the differential equation to be

a(t) = 0.7 + Ce−0.2t.

We use the initial condition to find that C = −0.7, so the solution to the initial value problem is

a(t) = 0.7− 0.7e−0.2t.

5(c).

• After one hour, the amount of drug in the bloodstream is a(1) = 0.7− 0.7e−0.2 = 0.1269 mg.

• After one day, a(24) = 0.6942 mg.

• As t →∞, e−0.2t → 0, so limt→∞ a(t) = 0.7.
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1.4/2. The following table and plot show the result of applying Euler’s Method.

k tk yk f(tk, yk)
0 0.00 1.0000 -1.0000
1 0.25 0.7500 -0.3125
2 0.50 0.6719 0.0486
3 0.75 0.6840 0.2821
4 1.00 0.7545 0.4307
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1.4/5. (See the solution in the text.)

1.4/6.

k tk yk f(tk, yk)
0 0 0 3.0000
1 0.5000 1.5000 3.7500
2 1.0000 3.3750 -1.6406
3 1.5000 2.5547 1.5829
4 2.0000 3.3462 -1.5045
5 2.5000 2.5939 1.4594
6 3.0000 3.3236 -1.3992
7 3.5000 2.6240 1.3626
8 4.0000 3.3053 -1.3144
9 4.5000 2.6481 1.2838
10 5.0000 3.2900 -1.2441
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1.4/10. Euler’s Method is not working very well in either case. For example, we know the equation has
an equilibrium at w = 3. If w(0) > 3, we expect the solution to approach this equilibrium as t →∞. But in
Exercise 5, the solution jumps from w = 4 to w = −1 in one step, and in Exercise 6, the numerical solution
appears to be oscillating around w = 3. Neither of these behaviors is reasonable for this equation. Any
solution that crossed w = 3 would have to have a slope of zero there; neither of these approximations shows
this. (Looking ahead to Section 1.5, we could quote the Uniqueness Theorem, and point out that it would
be impossible for a solution to cross w = 3.)

In both cases, the step size is too big. We need to use a smaller step size to get reasonable results.
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1.4/11. Here is a plot of the right-hand side of the differential equation in Exercise 6 versus w:

dw

dt
vs. w
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There are two equilibrium solutions, w(t) = −1 and w(t) = 3. For w < −1 or w > 3, w(t) is decreasing, while
for −1 < w < 3, w(t) is increasing. Any solution w(t) for which −1 < w(0) < 3 will increase monotonically
toward 3. If a solution crossed w = 3 (which, as we will see in Section 1.5, is not possible for this equation),
it would have to have a slope of zero there.

The numerical solution computed in Exercise 6 oscillates around the value w = 3, which our qualitative
analysis shows is impossible behavior for a solution to the differential equation.
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