Math 308 Differential Equations Fall 2002

Homework 2 Solutions

1 & 2. See the last page.

3(a). Newton’s second law of motion says that ma = F, and we know a = %’, so we have m% = F. One

part of the force is gravity, mg. However, we are using the convention that “up” is positive, and gravity
creates an acceleration downward, so the gravitational force is really —mg. In part (a), we are told that there
is a frictional force Fy(v) that depends on v. We know that this force should act in the direction opposite
to the direction of motion, but we are told that Fy(v) < 0 when v > 0, so that is accounted for in Fy. So
the total force is F' = —mg + F4(v). Thus Newton’s second law gives us

d
md—: = —mg + Fy(v),

or

dt g m
This is a first order differential equation for v, the velocity of the object.
If the object is released from height yy at ¢ = 0, the velocity at that instant is zero. Therefore the initial
condition is

dv N Fd(v).

v(0) = 0.

3(b). In this case, F;(v) =0, and the equation is

dv
at ~ 7
We can integrate this to obtain
v=—gt+C,
and the initial condition v(0) = 0 gives us C = 0, so
v(t) = —gt.
As t increases, the velocity decreases linearly with .
3(c). If Fy(v) = —Cqv, the equation for v is
dv Cd
— =—g— —w.
dt S

This equation for v is separable, so we can following the usual steps to solve it:
Separate (assuming v # —gm/Cy):
dv

g+ (Cy/m)v = —db.



Integrate and solve for v(t). I'll do this one in detail once more (in the following, exp(z) = e*):
m

In|g + (Ca/m)v| = =t + k1,
Cq

C
In|g + (Cq/m)v| = —Edwr ks (where ko = (Cyq/m)k1),
C
o+ (Cafmyel = exp (-S4 1)
= k3 exp (—Cdt> (where ks = ek?),
m

Note that ks must be a positive constant, because it comes from exponentiating ks. Let’s get rid of the
absolute value. We have two cases: g + (Cyq/m)v > 0, or g+ (Cy/m)v < 0.
If g+ (Cq/m)v > 0, then |g + (Cyq/m)v| = g + (Cq/m)v, and the last equation becomes

C
g+ (Cyq/m)v = k3 exp (—mdt)

If g4 (Cq/m)v < 0, then |g + (Cq/m)v| = —(g + (Ca/m)v), so we have

C
g+ (Caq/m)v = —ksexp (—th)

The only difference between these two cases is the minus sign. Now, k3 is a positive constant, so we can
combine these two cases into one formula

C
g+ (Cq/m)v = kgexp (mdt)

where k4 is an arbitrary nonzero constant. And then we observe that if k4 = 0, we have g+ (Cy/m)v =0, or
v = —mg/Cy, which is the equilibrium solution. Thus we can say that k4 is an arbitrary constant (including
the possibility that k4 = 0).

Finally, we solve for v:

gm Cy
v(t) =—=-+ ke ——t],
(6=~ 4 kexp (- S)

where k is an arbitrary constant. (k is just (Cgq/m)ks4, and since k4 is arbitrary, so is k.)

We want the solution where v(0) = 0, so

gm gm

v(0) =—C—d+k=O, hence k= o

Thus the solution to the initial value problem in this case is

_ogm gm o (=G I () (-G
v(t) = Cd+CdeXp( mt)— a (1 exp( mt))

m
As t increases, exp (f%t) approaches zero, so the velocity approaches f%. (This is the terminal velocity.)
d

3(d). We now assume that Fj;(v) = —Cyv|v|. Before proceeding, let’s use a little intuition to make life
easier. If we drop the object, we expect it to fall; the velocity will be zero initially, and then it will become
negative. We expect it to stay negative for t > 0. Therefore, for the solution that we are considering, we

have |v| = —v, and Fy(v) = Cqv?. The differential equation is then
dv Cyv?
dt '



This equation is separable, and we solve it the usual way. That is, we write

dv

—— =dt
Cqv? ’
9 ?r:)

and integrate. While it is not necessary, I'll first make the coefficient of v? one:

d C
W7U2:—ddt
—Cid‘i"l} m

)

For convenience, I'll define the parameter a = , /%5' (We can do this because m, g, and Cy are all positive.

Note that this is not the same a as the acceleration in Newton’s Law.) We then have

dv Cd
p) = Edt, (1)

v2 —qa?

To integrate the expression on the left, we will use the partial fraction expansion

1 -1 1

2 a2  2a(v+a) +2a(vfa)'

v
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Then

1
— (Injv—a] —In|v + a|)

2a
1 v—a
=—1In .
2a v+a
Thus, the result of integrating both sides of (1) is

1 - C

- 11'1 v a = 7dt + K1~

2a v+a m

This gives us
v—a
v+a

2aC, 2aC,
:exp( C;ndt—&-ZaKl) :ngxp< (jndt>,

— 2aC!
Y a:ngXp< a4 dt).
m

where, as usual, we absorb the + into the constant K3. Now solve this for v:

or

v—a= Kzexp (2acdt> (v+a),
m

2 2
a+K3exp< L;fdt)a—a<1+ngxp< f%))

_a (1 + Ksexp (%ﬁt))
1 — Kzexp (%t)
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Recall that a = 4 /”g—f, so we have

Now we find the solution for which v(0) = 0:

mg (1+ K3
=4/= =0 = K3=-1.
U(O) Cd (1K3> 0 3

So the solution to the initial value problem is

o(t) = =2

Ca 1+ exp (21/92‘1t>

As t increases, the exponentials in this formula become large (much larger than 1), and the expression in

parentheses approaches —1. Thus, as ¢ increases, v(t) approaches — %‘i’. Again we see that there is a
terminal velocity.
3(e). In (c), we have the equation 4 = —g — (Cyq/m)v, so the term (Cy/m)v must have the same units as

%, which is an acceleration, with units m/sec?. v has units of m/sec, and m has units of kg, so Cy must

have units of kg/sec for (Cy/m)v to have units of m/sec?.
In (d), the term (Cy/m)v? must have units of acceleration, so in this case, the units of C;y must be kg/m.

4. The logistic equation is

ap P
= —k(1-=)P
=+ (%)

The equilibria are P(t) = 0 and P(t) = N. Now assume P # 0 and P # N. We separate to obtain:

dp

P _kat
(1-%)P

To integrate the left side, we use the partial fraction expansion:

dp 1 1
¥ [ (——+=)dp=-In|N-P|+In|P| =1
./O—@P /(NP+P)@ n| | +1n|P|=1In

P
N-P|
(I haven’t included the constant of integration; this will be included in the constant on the right side.) So
after integrating we have

P
1 =kt + C.
n —P‘ —|— 1
Now solve for P:
P
‘N_P‘ — k01 0261@,
P
:C kt
N_p %



Note that Cs is a positive constant, while C5 is an arbitrary nonzero constant. As in previous problems, the
+C5 that arises from eliminating the absolute value is absorbed into Cj.
With a little algebra, we find solve for P:

C3N€kt
P(t) = T4 Okt (2)

We observe that setting C3 = 0 gives us P = 0, which is one of the equilibrium solutions, so in fact we can
allow C5 to be an arbitrary constant, including C5 = 0. However, there is no value of C5 that will give us
the other equilibrium solution P = N, so the general solution is given by (2) or

P(t) = N.
A different (but equivalent) form of the solution is

N

P=—""
1+C4€7kt

where Cy is an arbitrary constant.

5(a). The amount of drug in the bloodstream at time ¢ (in hours) is a(t) milligrams. There are two
processes causing the amount to change:

1. The drug clears at a rate that is proportional to the amount present. We are told that the pro-
portionality constant is 0.2 per hour, so the rate of change of a(t) from the clearing of the drug is
—0.2a(t).

2. The drug is being added intravenously. The concentration of the drug in the solution is 1.4 mg/¢, and
the flow rate is 0.1 £/hour, so the rate of change of a is (1.4 mg/¢)(0.1 £/hour) = 0.14 mg/hour.

Thus the net rate of change of a(t) is —0.2a + 0.14. This gives us the differential equation

da
— =-0.2 0.14.
o7 a+

We are told that there is initially no drug in the bloodstream, so the initial condition is
a(0) = 0.
The differential equation and the initial condition are the initial value problem.
5(b). The differential equation is separable; in fact, we solved a more general equation like this in class.
We find the general solution to the differential equation to be
a(t) = 0.7+ Ce "2,
We use the initial condition to find that C' = —0.7, so the solution to the initial value problem is

a(t) = 0.7 —0.7e7 %2,

5(c).
e After one hour, the amount of drug in the bloodstream is a(1) = 0.7 — 0.7¢=%2 = 0.1269 mg.

e After one day, a(24) = 0.6942 mg.

—0.2t

o Ast— o0, € — 0, so limy_, o, a(t) = 0.7.




1.4/2. The following table and plot show the result of applying Euler’s Method.

1

0.9 7

0.8 4

ty Yk S (s yw) orr |
0.00 1.0000 -1.0000
0.25 0.7500 -0.3125
0.50 0.6719 0.0486 0S5 i
0.75 0.6840 0.2821
1.00 0.7545 0.4307
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1.4/5. (See the solution in the text.)

1.4/6.
35

p
kot Yk f (ks yr) i ]
0 0 0 3.0000
1 0.5000 1.5000  3.7500
2 1.0000 3.3750  -1.6406 ey ]
3 1.5000 2.5547  1.5829
4 2.0000 3.3462  -1.5045 2r 1
5 25000 2.5939  1.4594 >
6 3.0000 3.3236  -1.3992 Lsf 1
7 35000 2.6240  1.3626
8  4.0000 3.3053  -1.3144 i ]
9 45000 2.6481  1.2838
10 5.0000 3.2900  -1.2441 osk ]

1.4/10. Euler’s Method is not working very well in either case. For example, we know the equation has
an equilibrium at w = 3. If w(0) > 3, we expect the solution to approach this equilibrium as ¢ — oco. But in
Exercise 5, the solution jumps from w = 4 to w = —1 in one step, and in Exercise 6, the numerical solution
appears to be oscillating around w = 3. Neither of these behaviors is reasonable for this equation. Any
solution that crossed w = 3 would have to have a slope of zero there; neither of these approximations shows
this. (Looking ahead to Section 1.5, we could quote the Uniqueness Theorem, and point out that it would
be impossible for a solution to cross w = 3.)
In both cases, the step size is too big. We need to use a smaller step size to get reasonable results.




1.4/11. Here is a plot of the right-hand side of the differential equation in Exercise 6 versus w:

dw
— vs. w
dt
n
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w
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4]
—64
There are two equilibrium solutions, w(t) = —1 and w(t) = 3. For w < —1 or w > 3, w(t) is decreasing, while

for —1 < w < 3, w(t) is increasing. Any solution w(t) for which —1 < w(0) < 3 will increase monotonically
toward 3. If a solution crossed w = 3 (which, as we will see in Section 1.5, is not possible for this equation),
it would have to have a slope of zero there.

The numerical solution computed in Exercise 6 oscillates around the value w = 3, which our qualitative
analysis shows is impossible behavior for a solution to the differential equation.



