
Math 308 Differential Equations Fall 2002

Homework 3 Solutions (Partial)

1(a). The right-hand side of the differential equation is f(t, y) = y/t, and this function is not continuous
at t = 0; in fact, it is not defined there. Also, ∂f

∂y = 1
t , which is also not continuous at t = 0. The functions f

and ∂f
∂y are continuous everywhere else in the ty plane, so the Existence and Uniqueness Theorems (as given

in the text and in class) apply in any rectangular region in the ty plane that does not contain t = 0.

1(b). Here is the slope field:

Slope Field for dy/dt = y/t
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All the arrows appear to point directly into or away from the origin. This suggests that the solutions might
be straight lines through the origin. Let’s see if this works. If y = kt for some constant k, then dy

dt = k, and
y
t = k, so y = kt is, in fact, a solution to the differential equation. (This is an example of the “guess and
check” method of solving a differential equation.)

1(c). We follow the usual steps for a separable equation. We assume that y 6= 0 and t 6= 0. Then

dy

dt
=

y

t
=⇒ dy

y
=

dt

t
=⇒ ln |y| = ln |t|+ C1 =⇒ |y| = eln |t|+C1 = C2e

ln |t| = C2|t|.

So we have
|y| = C2|t|,

where C2 is some positive constant. If y > 0 and t > 0, or if y < 0 and t < 0, this equation becomes y = C2t
(a line with positive slope). If y < 0 and t > 0, or if y > 0 and t < 0, this equation becomes y = −C2t (a
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line with negative slope). Since y = 0 is an equilibrium solution (for t > 0 or t < 0), we can express all the
solutions with one formula:

y = C3t,

where C3 is an arbitrary constant. (This is what we predicted above.)

• If y(1) = 0, then C3 = 0, and the solution is y(t) = 0.

• If y(1) = 1, then C3 = 1, and the solution is y(t) = t.

• If y(1) = 2, then C3 = 2, and the solution is y(t) = 2t.

Here is the slope field with the solutions y(t) = 0, y(t) = t, and y(t) = 2t included:

Slope Field With Solutions for dy/dt = y/t

–2

–1

0

1

2

–2 –1 1 2

t

1(d). We found that the general solution is y(t) = C3t, and therefore y(0) = 0. This does not contradict
the Uniqueness Theorem, because the Uniqueness Theorem does not apply when t = 0 for this differential
equation.

Note that in the above plot, I have only plotted the solution for t > 0. Technically, since we can not
evaluate the right side of the differential equation at t = 0, we should not include t = 0 in our solutions.
Then, for any solution to the initial value problem y(t0) = y0 with t0 > 0, the “biggest” interval of t for
which that solution can be a continuous solution to the differential equation is 0 < t < ∞.
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2. The differential equation is a first order autonomous differential equation, so it is separable. First we
observe that y(t) = 0 is an equilibrium solution. Now assume that y 6= 0, and following the usual steps:
Separate:

y−
4
5 dy = 5dt

Integrate:
5y

1
5 = 5t + C1

Solve for y:
y = (t + C2)5, where C2 = C1/5.

The initial condition y(0) = 0 gives y(0) = (C2)5 = 0, so C2 = 0.
So we now have two solutions that satisfy the initial condition y(0) = 0: y(t) = 0 and y(t) = t5. We can

use these two solutions to construct more solutions. Let a and b be two constants such that a ≤ 0 and b ≥ 0.
Then any function of the form

y(t) =





(y − a)5 t < a

0 a ≤ t ≤ b

(y − b)5 t > b

is also a solution to the initial value problem. The following plot shows an example where a = −2 and b = 1.

A possible solution (a=–2, b=1)
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Text Problems:

1.5/11(a). Recall from calculus that if the derivative exists at a local maximum, then it must be zero
there. That is, dy1

dt = 0 at t = t0. But y1(t) is a solution to the differential equation, so dy1
dt = f(y1(t)).

Thus, at t = t0, f(y1(t0)) = 0; and since y0 = y1(t0), we have f(y0) = 0.

1.5/11(b). The tangent line segments along y = y0 are horizontal (i.e. have zero slope) for all values of t,
because f(y0) = 0.

1.5/11(c). We have dy2
dt = d

dt (y0) = 0, and we also have f(y2(t)) = f(y0) = 0, so the function y2(t) = y0

is a solution to the differential equation; it is a constant function, so it is an equilibrium solution.

1.5/11(d). Apparently, we have two solutions that go through the point (t0, y0). However, we are told that
f(y) is continuously differentiable. This means that ∂f

∂y is continuous, and this means that the conditions of
the uniqueness theorem are satisfied. Thus there can only be one solution through this point, so y1(t) = y2(t).
Thus, y1(t) = y0 for all t.

1.5/11(e). The same arguments apply to a function that has a local minimum at some time t0, since the
derivative of y(t) is zero there.

Conclusion of 1.5/11: This problem has shown that the solution to an autonomous first order differential
equation can not have a strict local maximum or a strict local minimum. This means that a solution either
increases monotonically, decreases monotonically, or is an equilibrium.
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1.5/14(a). We solve the equation in the usual way. We assume that y 6= 0; then
dy

dt
= y3 =⇒ dy

y3
= dt =⇒ −y−2/2 = t + C1 =⇒ y−2 = −2t + C2 =⇒ y =

1
±√−2t + C2

The ± tells us that for each value of C2, there are two possible solutions. We want y(0) = 1 > 0, so we must
use the positive root. Then y(0) = 1 =⇒ C2 = 1. Thus the solution to the initial value problem is

y(t) =
1√−2t + 1

.

1.5/14(b). This solution is defined as long as −2t + 1 > 0, so the domain of definition is t < 1
2 .

1.5/14(c). Consider t → (
1
2

)−. We see that lim
t→( 1

2 )
−

y(t) = ∞; the solution “blows up” at t = 1/2.

Also, as t → −∞, y(t) → 0.

1.5/17(a). We solve the differential equation in the usual way. We assume that y 6= 2; then

dy

dt
=

t

y − 2
=⇒ (y − 2)dy = tdt =⇒ y2/2− 2y = t2/2 + C1 =⇒ y2 − 4y − t2 + C2 = 0.

We are given y(−1) = 0, so (0)2 − 4(0)− (−1)2 + C2 = 0 =⇒ C2 = 1. We continue to solve for y:

y2 − 4y − t2 + 1 = 0 =⇒ y =
4±√16 + 4t2 − 4

2
=⇒ y = 2±

√
t2 + 3.

In order to satisfy the initial condition y(−1) = 0, we must use the negative square root, so the solution to
the initial value problem is

y(t) = 2−
√

t2 + 3.

1.5/17(b). Since t2 + 3 > 0 for all t, and y(t) < 2 for all t, the solution is defined for all t.

1.5/17(c). In this case, since the solution is defined for all t, the “limits of its domain” means t → ±∞,
and

lim
t→∞

y(t) = −∞ and lim
t→−∞

y(t) = −∞.

5



1.6/41(a). This is a straight-forward application of the Intermediate Value Theorem (IVT) for continuous
functions. We are told that f is continuous, f(−10) > 0 and f(10) < 0, so by the IVT, there is a number c
between −10 and 10 such that f(c) = 0. This means that y(t) = c is an equilibrium solution.

1.6/41(b). Because y = 1 is a source, there must be an interval to the right of y = 1, say 1 < y ≤ 1 + ε
(where ε > 0), on which f(y) > 0, and an interval to the left of y = 1, say 1 − δ ≤ y < 1 (where δ > 0) on
which f(y) < 0.

Now, since f(1 + ε) > 0, and f(10) < 0, the IVT says there must be a number c between 1 + ε and 10
such that f(c) = 0. There may, in fact, be several points where f is zero, but since there are only finitely
many equilibria, and f must reach a negative value when y = 10, f must strictly decrease through one of
these points, say c1. Then the equilibrium y = c1 is a sink.

Similarly, f must be zero at one or more points between −10 and 1− δ, and at one of these points, say
y = c2, f must be strictly decreasing, so y = c2 is also a sink.

1.6/43. First, a reminder: Taylor’s Theorem says that (for a smooth enough function f), we may write

f(y) = f(y0) + f ′(y0)(y − y0) +
f ′′(y0)

2
(y − y0)2 +

f ′′′(y0)
3!

(y − y0)3 +
f iv(z)

4!
(y − y0)4,

where z is a number between y and y0. We are assuming that y0 is an equilibrium, so f(y0) = 0, and we are
left with

f(y) = f ′(y0)(y − y0) +
f ′′(y0)

2
(y − y0)2 +

f ′′′(y0)
3!

(y − y0)3 +
f (iv)(z)

4!
(y − y0)4.

Note that the terms on the right are polynomials in (y− y0); the first term is linear, the second is quadratic,
etc. The behavior (or the shape) of the graph of f near y0 is determined by the lowest order nonzero term
in this formula. Suppose, for example, that f ′(y0) 6= 0. If we zoom in closer and closer to y0, the graph will
look more and more like a straight line, with slope f ′(y0).

If f ′(y0) = 0, but f ′′(y0) 6= 0, then as we zoom in closer and closer to y0, the graph will look more and
more like a parabola. Similarly, if both f ′(y0) and f ′′(y0) are zero, but f ′′′(y0) 6= 0, the graph will look like
the cubic function k(y − y0)3 near y0 (where k = f ′′′(y0)/3!).

With this in mind, we can answer the questions.

(a) In this case, the graph of f looks like f ′′′(y0)
3! (y − y0)3 when y is close to y0, and since f ′′′(y0) > 0,

this implies that f(y) > 0 for y close to but greater than y0, and f(y) < 0 for y close to but less than y0.
Therefore, y0 must be a source.

(b) We make the same argument as above, but now f ′′′(y0) < 0, so f(y) has the opposite sign (near y0)
as the previous case, so y0 is a sink.

(c) In this case, as we zoom in closer and closer to y0, the function looks more and more like the parabola
f ′′(y0)

2 (y − y0)2, and since f ′′(y0) > 0, we have f(y) > 0 on either side of y0. Thus y0 is a node.
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