

**Homework Assignment 9**

Due Friday, November 22.

1. Consider the system  $\frac{d\vec{Y}}{dt} = A\vec{Y}$ , where  $A = \begin{bmatrix} -1 & 1/2 \\ -1/2 & 0 \end{bmatrix}$ .

- Find the general solution.
- Sketch the phase portrait. Include the straight-line solutions, and a few other curves to illustrate the qualitative behavior. Use nullclines to help draw reasonably accurate solution curves.
- Solve the initial value problem  $\vec{Y}(0) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ , and sketch the corresponding  $x$  and  $y$  coordinates of this solution versus  $t$  (include positive and negative values of  $t$ ).

2. Consider

$$\frac{d\vec{Y}}{dt} = A\vec{Y}, \quad \text{where } A = \begin{bmatrix} p & 1 \\ 0 & p \end{bmatrix}.$$

Use a computer (either Maple or the “HPG System Solver” on the text’s CD) to create phase portraits when  $p = -1$ ,  $p = -0.1$ ,  $p = 0$ ,  $p = 0.1$ ,  $p = 1$ . Include solution curves that go through the points  $(2, 0)$ ,  $(2, 2)$  and  $(0, 2)$ . Hand in copies of the cases  $p = -1$ ,  $p = 0$  and  $p = 1$ , and describe (with complete sentences) how the phase portrait changes as  $p$  changes from  $-1$  through  $0$  to  $1$ .

3. Now consider

$$\frac{d\vec{Y}}{dt} = A\vec{Y}, \quad \text{where } A = \begin{bmatrix} -1 & p \\ 0 & -1 \end{bmatrix}.$$

and repeat the previous problem.

*Text Problems*

- Section 3.6/ 8, 10, 12 (Do these without converting to a system!)

*Recommended Exercises - Do Not Hand In – Check the answers in the back of the book.*

- Section 3.5/ 1–7 odds, 14
- Section 3.6/ 1–11 odds (Do these without converting to a system!), 33
- Section 3.7/ 3, 7