
Math 308 Differential Equations, Fall 2003 Exercise Set 3 Solutions

2.5/ 3.
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The equilibrium points are y = 0, y = 1 and y = 2. y = 0 is unstable; y = 1 is asymptotically stable; and
y = 2 is unstable.

2.5/ 4.
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The only equilibrium point is y = 0, and it is unstable.
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2.5/ 7.

(a) We have f(y) = k(1 − y)2. The critical points are the solutions to f(y) = 0, and the only solution to
k(1− y)2 = 0 (when k > 0) is y = 1. Thus y = 1 is a critical point; the corresponding equilibrium solution
is the constant function φ(t) = 1. (Or simply y(t) = 1; the book often uses φ to refer to specific solutions.)

(b) For any k > 0, the graph of f(y) is a parabola the opens upwards, with its minimum at the point
(1, 0). For example, here is the plot with k = 1:
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Clearly f(y) > 0 for y < 0 and for y > 0. Thus, unless y = 0, the differential equation dy
dt = f(y) tells us

that y(t) must be an increasing function of t.

(c) We already know that y(t) = 1 is an equilibrium solution. Now assume y 6= 1. By separating, we find

dy

(1− y)2
= k dt

Integrate to obtain
1

1− y
= kt + C.

To satisfy the initial condition y(0) = y0, we must have

1
1− y0

= C.

Now solve for y:

y = 1− 1
kt + C

= 1− 1
kt + 1/(1− y0)

= 1− 1− y0

(1− y0)kt + 1

Consider the term 1−y0
(1−y0)kt+1 . If y0 < 1, then the denominator increases monotonically (from the value

1 when t = 0), and so the quotient decreases monotonically and approaches 0 asymptotically. Thus y(t)
increases monotonically and approaches 1 asymptotically.

If y0 > 1, then the denominator of 1−y0
(1−y0)kt+1 decreases from 1 (when t = 0) and becomes 0 when

t = 1
k(y0−1) . Since the denominator goes to zero, the quotient must “blow up”; and since 1 − y0 < 0, it

approaches negative infinity. Therefore y(t) is increasing, and has a vertical asymptote at t = 1
k(y0−1) .
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2.5/ 9.
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There are three critical points: y = −1, y = 0 and y = 1.
y = −1 is asymptotically stable.
y = 0 is semi-stable.
y = 1 is unstable.

2.5/ 14. If f ′(y1) < 0, then there is an interval containing y1 such that for all y < y1 in the interval,
f ′(y) > 0, and for all y > y1 in the interval, f ′(y1) < 0. This implies that for any solution y(t) that is close
to but less than y1, y(t) is increasing, while for any solution y(t) that is close to but greater than y1, y(t)
is decreasing. Therefore, solutions are are sufficiently close to y1 must converge to y1 asymptotically, which
means the equilibrium solution φ(t) = y1 is asymptotically stable.

If f ′(y1) > 0, then there is an interval containing y1 such that for all y < y1 in the interval, f ′(y) < 0,
and for all y > y1 in the interval, f ′(y1) > 0. Reasoning as above, this implies that all solutions sufficiently
close to y1 must diverge from y1. Thus the equilibrium solution φ(t) = y1 is unstable.

2.5/ 19.

(a) The volume V of a cylinder with constant cross section area A and height h is V = Ah. If V and h
are functions of time t, then

dV

dt
= A

dh

dt
.

We are told that water is pumped into the tank at rate k; thus k is a rate of change of the volume V . (We
assume that k > 0.) The rate at which the water flows out of the hole is αa

√
2gh, which is also a rate of

change of the volume. The net rate of change of the volume is the difference of these two quantities. Thus

dV

dt
= k − αa

√
2gh,

or
dh

dt
=

(
k − αa

√
2gh

)
/A.

(b) Let f(h) =
(
k − αa

√
2gh

)
/A. By solving f(h) = 0, we find that the only equilibrium is he = k2

2gα2a2 .

Now f ′(h) = −αa
√

2g

2A
√

h
, and f ′(he) = − gα2a2

kA < 0. By the result of problem 14, he is asymptotically stable.

2.5/ 20. The differential equation is

dy

dt
= r

(
1− y

K

)
y − Ey.

Let f(y) = r
(
1− y

K

)
y − Ey.

(a) We have f(y) = − r
K y2 +(r−E)y. Solving f(y) = 0 gives two solutions: y1 = 0 and y2 = K(r−E)/r =

K(1−E/r). Actually, this is two distinct solutions if E 6= r, but the problem asked for the equilibria under
the condition that E < r. Also note that if E < r, then y2 > 0.
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(b) We could compute f ′(y) and evaluate at y1 and y2, but in this case we can simply point out that the
graph of f is a parabola that opens downward, so the slope at y1 = 0 (the left equilibrium) must be postive
and the slope at y2 (the right equilibrium) must be negative. Therefore, by the result of problem 14, y1 is
unstable and y2 is asymptotically stable.

(c) The sustainable yield is

Y = Ey2 = KE(1− E/r) = −K

r
E2 + KE.

The graph of Y (E) is a parabola opening downwards, with zeros are E = 0 and E = r.

(d) The maximum of Y (E) occurs when E = r/2, and the yield at this value is Ym = Y (r/2) = Kr/4.
This is the maximum sustainable yield.

2.5/ 21. The differential equation is

dy

dt
= r

(
1− y

K

)
y − h.

Let f(y) = r
(
1− y

K

)
y − h = − r

K y2 + ry − h.

(a) By solving f(y) = 0 we find y = −K
(
−r ±

√
r2 − 4rh/K

)
/(2r) = K

(
1±

√
1− 4h/(rk)

)
/2. There

are two real distinct solutions if 1 − 4h/rK > 0, and this holds if h < rK/4. Thus, if h < rK/4, the
equilibrium solutions are y1 = K

(
1−

√
1− 4h/(rk)

)
/2 and y2 = K

(
1 +

√
1− 4h/(rk)

)
/2.

A representative graph of f(y) when h < rK/4 is shown here. In this example, r = 1, K = 2 and h = 0.1.
Since rK/4 = 0.5 and h < 0.5, there are two equilibria, as expected.
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(b) We make a simple argument. The graph of f(y) is a parabola opening downward, so the slope of the
graph of f must be positive at y1 and negative at y2. Therefore, by problem 14, y1 is unstable and y2 is
asymptotically stable.

(c) If the initial population y0 is between y1 and y2, then f(y) is always positive, so y(t) will increase
and approach y2 asymptotically. If the y0 > y2, then f(y) < 0, and y(t) will decrease, but it also ap-
proaches y2 asymptotically. Thus for any initial population y0 larger than y1, the population will approach
y2 asymptotically.

If y0 < y1, then y(t) will monotonically decrease, and it will eventually reach zero. (Mathematically, the
solution would go through zero and become negative, because zero is not an equilibrium solution in this case.
However, a negative population is not meaningful. Once the population reaches zero, there are no more fish,
so it is pointless to continue from there.)

4



(d) If h > rK/4, then f(y) = 0 has no solutions; there are no equilibria. In fact, in this case f(y) < 0 for
all y. This means that all solutions to the differential equation decrease monotonically, and all solutions will
eventually reach zero.

The following plot shows a representative graph of f(y) when h > rK/4. In this example, r = 1, K = 2,
and h = 0.6 > rK/4. Note that there are no equilibria, and f(y) < 0 for all y.
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(e) If h = rK/4, then f(y) = − r
K

(
y − K

2

)2
. This is that situation discussed in problem 7; the only

equilibrium is y = K/2 and it is semi-stable.
The following plot shows a representative graph of f(y) when h = rK/4. In this example, r = 1, K = 2,

and h = 0.5 = rK/4. There is just one equilibrium at y = 1, and for all other y, f(y) < 0.
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