2.5/ 3.

The equilibrium points are $y=0, y=1$ and $y=2 . y=0$ is unstable; $y=1$ is asymptotically stable; and $y=2$ is unstable.
2.5/4.

The only equilibrium point is $y=0$, and it is unstable.

2.5/7.

(a) We have $f(y)=k(1-y)^{2}$. The critical points are the solutions to $f(y)=0$, and the only solution to $k(1-y)^{2}=0$ (when $k>0$) is $y=1$. Thus $y=1$ is a critical point; the corresponding equilibrium solution is the constant function $\phi(t)=1$. (Or simply $y(t)=1$; the book often uses ϕ to refer to specific solutions.)
(b) For any $k>0$, the graph of $f(y)$ is a parabola the opens upwards, with its minimum at the point $(1,0)$. For example, here is the plot with $k=1$:

Clearly $f(y)>0$ for $y<0$ and for $y>0$. Thus, unless $y=0$, the differential equation $\frac{d y}{d t}=f(y)$ tells us that $y(t)$ must be an increasing function of t.
(c) We already know that $y(t)=1$ is an equilibrium solution. Now assume $y \neq 1$. By separating, we find

$$
\frac{d y}{(1-y)^{2}}=k d t
$$

Integrate to obtain

$$
\frac{1}{1-y}=k t+C
$$

To satisfy the initial condition $y(0)=y_{0}$, we must have

$$
\frac{1}{1-y_{0}}=C
$$

Now solve for y :

$$
y=1-\frac{1}{k t+C}=1-\frac{1}{k t+1 /(1-y 0)}=1-\frac{1-y_{0}}{\left(1-y_{0}\right) k t+1}
$$

Consider the term $\frac{1-y_{0}}{\left(1-y_{0}\right) k t+1}$. If $y_{0}<1$, then the denominator increases monotonically (from the value 1 when $t=0$), and so the quotient decreases monotonically and approaches 0 asymptotically. Thus $y(t)$ increases monotonically and approaches 1 asymptotically.

If $y_{0}>1$, then the denominator of $\frac{1-y_{0}}{\left(1-y_{0}\right) k t+1}$ decreases from $1($ when $t=0)$ and becomes 0 when $t=\frac{1}{k\left(y_{0}-1\right)}$. Since the denominator goes to zero, the quotient must "blow up"; and since $1-y_{0}<0$, it approaches negative infinity. Therefore $y(t)$ is increasing, and has a vertical asymptote at $t=\frac{1}{k\left(y_{0}-1\right)}$.

2.5/ 9.

There are three critical points: $y=-1, y=0$ and $y=1$.
$y=-1$ is asymptotically stable.
$y=0$ is semi-stable.
$y=1$ is unstable.
2.5/ 14. If $f^{\prime}\left(y_{1}\right)<0$, then there is an interval containing y_{1} such that for all $y<y_{1}$ in the interval, $f^{\prime}(y)>0$, and for all $y>y_{1}$ in the interval, $f^{\prime}\left(y_{1}\right)<0$. This implies that for any solution $y(t)$ that is close to but less than $y_{1}, y(t)$ is increasing, while for any solution $y(t)$ that is close to but greater than $y_{1}, y(t)$ is decreasing. Therefore, solutions are are sufficiently close to y_{1} must converge to y_{1} asymptotically, which means the equilibrium solution $\phi(t)=y_{1}$ is asymptotically stable.

If $f^{\prime}\left(y_{1}\right)>0$, then there is an interval containing y_{1} such that for all $y<y_{1}$ in the interval, $f^{\prime}(y)<0$, and for all $y>y_{1}$ in the interval, $f^{\prime}\left(y_{1}\right)>0$. Reasoning as above, this implies that all solutions sufficiently close to y_{1} must diverge from y_{1}. Thus the equilibrium solution $\phi(t)=y_{1}$ is unstable.

2.5/ 19.

(a) The volume V of a cylinder with constant cross section area A and height h is $V=A h$. If V and h are functions of time t, then

$$
\frac{d V}{d t}=A \frac{d h}{d t}
$$

We are told that water is pumped into the tank at rate k; thus k is a rate of change of the volume V. (We assume that $k>0$.) The rate at which the water flows out of the hole is $\alpha a \sqrt{2 g h}$, which is also a rate of change of the volume. The net rate of change of the volume is the difference of these two quantities. Thus

$$
\frac{d V}{d t}=k-\alpha a \sqrt{2 g h}
$$

or

$$
\frac{d h}{d t}=(k-\alpha a \sqrt{2 g h}) / A
$$

(b) Let $f(h)=(k-\alpha a \sqrt{2 g h}) / A$. By solving $f(h)=0$, we find that the only equilibrium is $h_{e}=\frac{k^{2}}{2 g \alpha^{2} a^{2}}$. Now $f^{\prime}(h)=-\frac{\alpha a \sqrt{2 g}}{2 A \sqrt{h}}$, and $f^{\prime}\left(h_{e}\right)=-\frac{g \alpha^{2} a^{2}}{k A}<0$. By the result of problem $14, h_{e}$ is asymptotically stable.
2.5/20. The differential equation is

$$
\frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y-E y
$$

Let $f(y)=r\left(1-\frac{y}{K}\right) y-E y$.
(a) We have $f(y)=-\frac{r}{K} y^{2}+(r-E) y$. Solving $f(y)=0$ gives two solutions: $y_{1}=0$ and $y_{2}=K(r-E) / r=$ $K(1-E / r)$. Actually, this is two distinct solutions if $E \neq r$, but the problem asked for the equilibria under the condition that $E<r$. Also note that if $E<r$, then $y_{2}>0$.
(b) We could compute $f^{\prime}(y)$ and evaluate at y_{1} and y_{2}, but in this case we can simply point out that the graph of f is a parabola that opens downward, so the slope at $y_{1}=0$ (the left equilibrium) must be postive and the slope at y_{2} (the right equilibrium) must be negative. Therefore, by the result of problem $14, y_{1}$ is unstable and y_{2} is asymptotically stable.
(c) The sustainable yield is

$$
Y=E y_{2}=K E(1-E / r)=-\frac{K}{r} E^{2}+K E
$$

The graph of $Y(E)$ is a parabola opening downwards, with zeros are $E=0$ and $E=r$.
(d) The maximum of $Y(E)$ occurs when $E=r / 2$, and the yield at this value is $Y_{m}=Y(r / 2)=K r / 4$. This is the maximum sustainable yield.
2.5/21. The differential equation is

$$
\frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y-h
$$

Let $f(y)=r\left(1-\frac{y}{K}\right) y-h=-\frac{r}{K} y^{2}+r y-h$.
(a) By solving $f(y)=0$ we find $y=-K\left(-r \pm \sqrt{r^{2}-4 r h / K}\right) /(2 r)=K(1 \pm \sqrt{1-4 h /(r k)}) / 2$. There are two real distinct solutions if $1-4 h / r K>0$, and this holds if $h<r K / 4$. Thus, if $h<r K / 4$, the equilibrium solutions are $y_{1}=K(1-\sqrt{1-4 h /(r k)}) / 2$ and $y_{2}=K(1+\sqrt{1-4 h /(r k)}) / 2$.

A representative graph of $f(y)$ when $h<r K / 4$ is shown here. In this example, $r=1, K=2$ and $h=0.1$. Since $r K / 4=0.5$ and $h<0.5$, there are two equilibria, as expected.

(b) We make a simple argument. The graph of $f(y)$ is a parabola opening downward, so the slope of the graph of f must be positive at y_{1} and negative at y_{2}. Therefore, by problem $14, y_{1}$ is unstable and y_{2} is asymptotically stable.
(c) If the initial population y_{0} is between y_{1} and y_{2}, then $f(y)$ is always positive, so $y(t)$ will increase and approach y_{2} asymptotically. If the $y_{0}>y_{2}$, then $f(y)<0$, and $y(t)$ will decrease, but it also approaches y_{2} asymptotically. Thus for any initial population y_{0} larger than y_{1}, the population will approach y_{2} asymptotically.

If $y_{0}<y_{1}$, then $y(t)$ will monotonically decrease, and it will eventually reach zero. (Mathematically, the solution would go through zero and become negative, because zero is not an equilibrium solution in this case. However, a negative population is not meaningful. Once the population reaches zero, there are no more fish, so it is pointless to continue from there.)
(d) If $h>r K / 4$, then $f(y)=0$ has no solutions; there are no equilibria. In fact, in this case $f(y)<0$ for all y. This means that all solutions to the differential equation decrease monotonically, and all solutions will eventually reach zero.

The following plot shows a representative graph of $f(y)$ when $h>r K / 4$. In this example, $r=1, K=2$, and $h=0.6>r K / 4$. Note that there are no equilibria, and $f(y)<0$ for all y.
(y)
(e) If $h=r K / 4$, then $f(y)=-\frac{r}{K}\left(y-\frac{K}{2}\right)^{2}$. This is that situation discussed in problem 7 ; the only equilibrium is $y=K / 2$ and it is semi-stable.

The following plot shows a representative graph of $f(y)$ when $h=r K / 4$. In this example, $r=1, K=2$, and $h=0.5=r K / 4$. There is just one equilibrium at $y=1$, and for all other $y, f(y)<0$.
(0.5

