Second Order Nonhomogeneous Differential Equations Three Solved Examples

1. Find the general solution to

$$
\frac{d^{2} y}{d t^{2}}+9 y=5 \sin 2 t
$$

Solution. First find y_{h}. The homogeneous equation is $\frac{d^{2} y}{d t^{2}}+9 y=0$, so when we guess $y_{h}=e^{r t}$, we find $r^{2}+9=0$. Thus $r= \pm 3 i$, and we have

$$
y_{h}=k_{1} \cos 3 t+k_{2} \sin 3 t .
$$

Now we find the particular solution Y_{p}. The first guess is

$$
Y_{p}=A \cos 2 t+B \sin 2 t,
$$

and neither term in Y_{p} solves the homogeneous equation, so this will work. We find

$$
\begin{aligned}
Y_{p}^{\prime} & =-2 A \sin 2 t+2 B \cos 2 t \\
Y_{p}^{\prime \prime} & =-4 A \cos 2 t-4 B \sin 2 t
\end{aligned}
$$

Now put these into the original equation:

$$
\begin{gathered}
-4 A \cos 2 t-4 B \sin 2 t+9 A \cos 2 t+9 B \sin 2 t=5 \sin 2 t \\
(5 A) \cos 2 t+(5 B) \sin 2 t=5 \sin 2 t,
\end{gathered}
$$

and this implies $A=0$ and $B=1$. Thus $Y_{p}=\sin 2 t$. The general solution is

$$
y(t)=y_{h}+Y_{p}=k_{1} \cos 3 t+k_{2} \sin 3 t+\sin 2 t .
$$

2. Solve the initial value problem is

$$
\frac{d^{2} y}{d t^{2}}+4 y=3 \cos 2 t, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Solution. First find y_{h}; following the usual procedure, we find $y_{h}=k_{1} \cos 2 t+k_{2} \sin 2 t$.

Now we find the particular solution Y_{p}. Our first guess is $Y_{p}=A \cos 2 t+B \sin 2 t$. This will not work, because each term in this guess also solves the homogeneous problem. So we multiply by t to get the next guess:

$$
Y_{p}=A t \cos 2 t+B t \sin 2 t
$$

Neither term solves the homogeneous problem, so this will work. We find

$$
\begin{aligned}
Y_{p}^{\prime} & =(B-2 A t) \sin 2 t+(A+2 B t) \cos 2 t \\
Y_{p}^{\prime \prime} & =4 B \cos 2 t-4 A t \cos 2 t-4 A \sin 2 t-4 B t \sin 2 t .
\end{aligned}
$$

Put these into the original equation:

$$
4 B \cos 2 t-4 A t \cos 2 t-4 A \sin 2 t-4 B t \sin 2 t+4 A t \cos 2 t+4 B t \sin 2 t=3 \cos 2 t,
$$

so

$$
4 B \cos 2 t-4 A \sin 2 t=3 \cos 2 t
$$

and we have $A=0$ and $B=3 / 4$. Thus $Y_{p}=\frac{3}{4} t \sin 2 t$.
The general solution is then

$$
y(t)=y_{h}+Y_{p}=k_{1} \cos 2 t+k_{2} \sin 2 t+\frac{3}{4} t \sin 2 t
$$

Now choose k_{1} and k_{2} to satisfy the initial conditions. $y(0)=0 \Longrightarrow k_{1}+0+0=0 \Longrightarrow k_{1}=0$. Now

$$
y^{\prime}(t)=2 k_{2} \cos 2 t+(3 / 2) t \cos 2 t+(3 / 4) \sin 2 t
$$

and $y^{\prime}(0)=1 \Longrightarrow 2 k_{2}+0+0=1 \Longrightarrow k_{2}=1 / 2$. The solution to the initial value problem is

$$
y(t)=\frac{1}{2} \sin (2 t)+\frac{3}{4} t \sin 2 t .
$$

3. Solve the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=\cos (3 t), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution. The characteristic polynomial for the homogeneous equation is $r^{2}+2 r+5$, so we find $r=(-2 \pm \sqrt{4-20}) / 2=-1 \pm 2 i$. Thus

$$
y_{h}=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t) .
$$

To find Y_{p}, we could use the formula given in class or in the text, but it is not hard to simply derive it from scratch by using the method of undetermined coefficients. Our first guess is

$$
Y_{p}=A \cos (3 t)+B \sin (3 t),
$$

and this will work because neither term in Y_{p} also solves the homogeneous problem. We find

$$
\begin{aligned}
Y_{p}^{\prime} & =-3 A \sin (3 t)+3 B \cos (3 t) \\
Y_{p}^{\prime \prime} & =-9 A \cos (3 t)-9 B \sin (3 t)
\end{aligned}
$$

Substituting Y_{p} into the differential equation gives
$-9 A \cos (3 t)-9 B \sin (3 t)+2(-3 A \sin (3 t)+3 B \cos (3 t))+5(A \cos (3 t)+B \sin (3 t))=\cos (3 t)$,
or

$$
(-4 A+6 B) \cos (3 t)+(-4 B+6 A) \sin (3 t)=\cos (3 t)
$$

This implies $-4 A+6 B=1$ and $-4 B+6 A=0$; solving these for A and B gives $A=-1 / 13$ and $B=3 / 26$. The general solution is therefore

$$
y(t)=y_{h}+Y_{p}=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)-\frac{1}{13} \cos (3 t)+\frac{3}{26} \sin (3 t) .
$$

Now we must determine c_{1} and c_{2} to satisfy the initial conditions. First, we'll need $y^{\prime}(t)$:
$y^{\prime}(t)=c_{1}\left(-2 e^{-t} \sin (2 t)-e^{-t} \cos (2 t)\right)+c_{2}\left(2 e^{-t} \cos (2 t)-e^{-t} \sin (2 t)\right)+\frac{3}{13} \sin (3 t)+\frac{9}{26} \cos (3 t)$.
The given initial conditions $y(0)=1$ and $y^{\prime}(0)=0$ imply

$$
\begin{array}{r}
c_{1}-\frac{1}{13}=1 \\
-c_{1}+2 c_{2}+\frac{9}{26}=0
\end{array}
$$

and we find $c_{1}=14 / 13$ and $c_{2}=19 / 52$. Thus the solution to the initial value problem is

$$
y(t)=\frac{14}{13} e^{-t} \cos (2 t)+\frac{19}{52} e^{-t} \sin (2 t)-\frac{1}{13} \cos (3 t)+\frac{3}{26} \sin (3 t)
$$

