Summary of the Method of Undetermined Coefficients

The Method of Undetermined Coefficients is a method for finding a particular solution to the second order nonhomogeneous differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

when $g(t)$ has a special form, involving only polynomials, exponentials, sines and cosines.
In the following table, $P_{n}(t)$ is a polynomial of degree n : $P_{n}(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$.

$g(t)$	$Y_{p}(t)$ (first guess)
$k e^{r t}$	$A e^{r t}$
$k \cos (\omega t) \underline{\text { or }} k \sin (\omega t)$	$A \sin (\omega t)+B \cos (\omega t)$
$P_{n}(t)$	$A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}$
$P_{n}(t) e^{r t}$	$\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) e^{r t}$
$P_{n}(t) e^{r t} \cos (\omega t) \underline{\text { or }} P_{n}(t) e^{r t} \sin (\omega t)$	$\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) e^{r t} \cos (\omega t)+$
	$\left(B_{n} t^{n}+B_{n-1} t^{n-1}+\cdots+B_{1} t+B_{0}\right) e^{r t} \sin (\omega t)$

If any term in the first guess is also a solution to the corresponding homogeneous equation, multiply the whole guess by t. If any term in this second guess is still a solution to the homogeneous equation, multiply by t again (i.e. multiply the first guess by t^{2}).

To find the coefficients, substitute Y_{p} into the differential equation, and collect the coefficients of the different functions of t.

Example. Consider $y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}$. We find $y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$. Since $g(t)=t^{2}$, a second degree polynomial, we use the third line in the above table, and we guess $Y_{p}(t)=A_{2} t^{2}+A_{1} t+A_{0}$. None of the three terms in this guess also solves the homogeneous equations, so this guess will work.

Example. Consider $y^{\prime \prime}+6 y^{\prime}+10 y=t e^{-3 t} \cos (t)$. We find $y_{h}(t)=c_{1} e^{-3 t} \cos (t)+c_{2} e^{-3 t} \sin (t)$. Now $g(t)=t e^{-3 t} \cos (t)$, so we use the fifth line in the table above $\left(n=1, a_{1}=1, a_{0}=0, r=-3\right.$, $\omega=1$) to make the first guess

$$
\begin{aligned}
Y_{p}(t) & =\left(A_{1} t+A_{0}\right) e^{-3 t} \cos (t)+\left(B_{1} t+B_{0}\right) e^{-3 t} \sin (t) \\
& =A_{1} t e^{-3 t} \cos (t)+A_{0} e^{-3 t} \cos (t)+B_{1} t e^{-3 t} \sin (t)+B_{0} e^{-3 t} \sin (t)
\end{aligned}
$$

However, the terms $A_{0} e^{-3 t} \cos (t)$ and $B_{0} e^{-3 t} \sin (t)$ both solve the homogeneous equation, so we must multiply the first guess by t. Our guess is now

$$
\begin{aligned}
Y_{p}(t) & =t\left\{\left(A_{1} t+A_{0}\right) e^{-3 t} \cos (t)+\left(B_{1} t+B_{0}\right) e^{-3 t} \sin (t)\right\} \\
& =A_{1} t^{2} e^{-3 t} \cos (t)+A_{0} t e^{-3 t} \cos (t)+B_{1} t^{2} e^{-3 t} \sin (t)+B_{0} t e^{-3 t} \sin (t)
\end{aligned}
$$

None of the terms in this guess solves the homogeneous equation, so this guess will work.

