Math 308 - Differential Equations Fall 2003
Homework Assignment 1
Due Wednesday, September 2.

Note: Some of these problems will require numerical calculations. In calculations requiring several steps,
keep at least four significant digits in the intermediate steps. Use a computer program (such as Maple or
MathCAD) to create and print any plots. Be sure that in each plot the axes are clearly labeled, each curve
is labeled (if there is more than one curve), and there is a meaningful title.

1. A Preliminary Problem. This problem presents the solution to a linear difference equation, rather
than a differential equation. The result will be useful in Problem 2. Consider the difference equation

Tpy1 = Py + 4, n>1, and zg given (1)

where z,,, n = 1,2, 3, ... are unknown, and p and q are constants. For our purposes it will be sufficient
to assume that |p| < 1. An equation like this shows up in Problem 2 below.

(a) Verify that z, = p” (xo — L) + —L solves the difference equation (1) for any value of xg.

1-p 1-p
(b) Find lim x,.

n—oo

2. Drugs. A common model for drug absorption in the body is that, after receiving a dose (by an
injection, say), the drug will be cleared from the bloodstream at a rate that is proportional to the
amount present. In other words, if a(t) is the amount of the drug in the bloodstream at time ¢ (in
hours), then

da
=k
dt “
where k£ > 0 is the proportionality constant.
(a) Suppose that at ¢ = 0, a person (whose bloodstream is free of the drug for ¢ < 0) is given 80.00
units of the drug, and 24 hours later the amount of the drug remaining in the bloodstream is
found to be 12.50 units. Use this data to determine k.

(b) After the first 24 hours, the patient is again given a dose of 80 units. What will be the amount
of the drug in the bloodstream at the end of the next 24 hours?

(¢) Suppose the patient continues to receive 80 units every 24 hours. Let a, be the amount of the
drug in the bloodstream at the end of the nth 24 hour period. Determine the difference equation
satisfied by a,, and then use the formula given in Problem 1 to find the solution to this difference
equation.

(d) What is the limiting value of the amount of drug in the bloodstream at the end of the nth 24
hour period as n increases?

3. The Wind on Wynn. An anemometer is a device that measures wind speed. A common type of
anemometer is the “spinning cup” anemometer, like the one on top of Wynn Hall. In this problem
we consider a simple model of an anemometer. In the simplest sort of anemometer, the wind speed
displayed by the device is simply a multiple of the rate at which it is spinning. The question we will
address here is whether that is a reasonable design. First we need to set up our mathematical model.

Newton’s second law of motion says F' = ma, where F' is the net force applied to an object, a is the
acceleration of the object, and m is the (constant) mass of the object. (See Example 1 in the text,
page 2.) There is an analogous formula for rotating motion. This is

dw

T=I—
dt’



where T is the torque, I is the moment of inertia of the anemometer, w is the angular velocity! (i.e
the spin rate), and %‘2’ is the angular acceleration. The units of w might be, for example, radians per
second.

In our model of an anemometer, we’ll include two torques. These result from friction and from the
force of the wind. The simplest model of friction is that the frictional torque is proportional to the
angular velocity, and since friction “opposes” the angular velocity, the frictional torque has the form

Tf = —k‘w,

where k£ > 0 is a constant. The simplest model of how the wind acts on the anemometer is that the
torque due to the wind, T, is proportional to the wind speed v: T, = rv for some constant r > 0.
Then the total torque is T' =Ty + T, = —kw + rv. Newton’s law gives

dw 1

—kw + rv).

i 1!
The constant I would have to be computed (based on the shape and mass of the anemometer), and
the constants k£ and r would have to be determined experimentally. Let us suppose that someone has
already determined that, when v(t) is expressed in meters per second, and w is in radians per second,
we have k/I = 2 and r/I = 1. Then the differential equation becomes
dw
— = 2w+ v(?). 2
= (v 2)
(a) Suppose (as mentioned earlier), the anemometer simply displays a multiple of the angular velocity
as an approximation of the wind speed. That is, while the true velocity might be v(t), the display
will be W(t) = cw(t), where ¢ is a conversion constant. The constant is chosen so that in a
perfectly steady wind (perhaps tested in a wind tunnel), W (t) gives the correct wind speed.
By assuming that v(t) = vy, a constant, determine the value of ¢ so that W (¢) = cw(t) is the
correct steady state wind speed. Use this constant ¢ in the rest of the problem.
(b) Suppose that the anemometer is at rest for t < 0, so w(0) = 0. At ¢ = 0, the wind speed suddenly
jumps to v(t) = 3 meters per second.
i. Find the resulting angular velocity w(t), and find the error v(t) — W (t).
ii. What happens to the error as ¢ increases?
iii. Calculate how long it will take for W (t) to reach 90% of the steady state value.
iv. On the same set of axes, plot W(¢) and v(¢) for 0 < ¢ < 5.
(c) Let’s see what happens in a steadily changing wind speed. Suppose that w(0) = 0, and v(t) = mt.
(The parameter m determines how fast the wind speed is changing.)

i. Find w(t), and find the error v(t) — W(t). Your answers will depend on m.

ii. Discuss how the error depends on m. Also discuss what happens as t increases. Does the
error decrease? Does it go to zero?

iii. Suppose m = 0.5. In one graph, plot v(t), W(t), and the error v(¢t) — W(t) for 0 < ¢ < 5.
(d) Suppose the wind is blowing in periodic gusts. Let v(t) = 1 — cos(kt), where k is a constant that
determines the frequency of the gusts.
i. Find w(t), and find the error v(t) — W (t). Your answers will depend on k.

ii. What happens to the error as ¢ increases? Does the error go to zero? How does the error
depend on k7?7

ili. Suppose k= 1/3. In one graph, plot v(t), W(t), and |v(t) — W(t)| for 0 < ¢ < 30.

1«” is the lower case Greek letter “omega”, not a fancy “w”.



iv. Suppose k = 2. In one graph, plot v(t), W(¢), and |v(t) — W (¢)| for 0 < ¢ < 30.

(e) Does using a multiple of the angular velocity as an approximation of the wind speed seem reason-
able? Under what wind conditions is the approximation appropriate, and what conditions make
it a bad approximation?

4. An Economics Model. In this problem we look at a model from macroeconomics. Let K be the
capital?, L the labor, and @ the production output. We are interested in a dynamic problem, so K (t),
L(t) and Q(t) are all functions of time, but we will suppress the ¢ argument. In elementary economics,
one learns that a common assumption is that ) can be expressed as function of K and L:

Q= [f(K L) (3)

We make the reasonable assumptions that fx > 0 and f;, > 0. (The subscript denotes a partial
derivative: fx = 0f/OK.) These assumptions mean that @ increases if either K or L increases. That
is, with more capital or more labor, we can produce more. We also assume that fxx < 0 and fr; < 0.
These assumptions say that f has diminishing returns to the inputs K and L. In other words, the
larger K is, the less is the effect of increasing K, and the same holds for L. Finally, we also assume
that f has, using economics terminology, constant returns to scale. Mathematically, this means that
multiplying K and L by the same amount results in ) being multiplied by the same amount. That is,
for any constant b,
f(OBK,bL) =bf (K, L).

For example, the Cobb-Douglas function f(K,L) = K'/3L?/ satisfies the above assumptions. (You
should check this, but you don’t have to show it in your work.)

We make two more assumptions. We assume that a constant proportion of () is invested in capital.
This means that the rate of change of K is proportional to Q:

— =35 4
=@, @
where s is the proportionality constant. We also assume that the labor force is growing according to

the equation

dL

where A > 0 is the growth rate. (As you know, this is a simple first order equation for L which we can
solve to find L = Lge*t.)

Now we will combine equations (3), (4), and (5) to obtain a first order differential equation. First we
express the relation @ = f(K, L) in a different form. Because f has constant returns to scale, we can
write

Q= fx.0) =1 (17.1) =17 (1) = Lo(h), )

where we have introduced a new variable k = K/L (so k is the ratio of capital to labor), and we have
defined a new function g(k) = f(k, 1). By differentiating the relation K = kL and then using equation
(5) we obtain

dK dL  dk
P SR
dt kdt + dt
dk
= k(AL —L
(L) + —

dk
= 2L
(%)

2 Capital includes things that are owned to be used in production, such as buildings and manufacturing equipment.



Then equation (4) gives us

1dK
Q=T
1 dk
== (kA+— )L
8< +dt)

Finally, we put this expression for @ into (6):

1 dk
- (m + dt) L = Lg(k).

Cancel L, and rearrange a bit to obtain the first order differential equation for k:

dk
2k k).
o + sg(k)

This equation is the Solow growth model.
(a) Asa concrete example, let’s take the production function to be a Cobb-Douglas function f(K, L) =
K'/3L2/3. Under this assumption, what is g(k), and what is the differential equation for k?

(b) Keeping in mind that A and s are positive constants, do a qualitative analysis of the differential
equation in part (a). (Since K and L are positive, you may assume that k& > 0.) Include in your
analysis any equilibrium solutions, and discuss the behavior of k as time increases. What if £(0)
is near zero, or what if k(0) is large? In addition to describing how k behaves, be sure to explain
what this means in terms of the capital K, the labor L, and the production Q.

(¢) What roles do the constants s and A play in your analysis? Does changing s or A change the
number of equilibria, or the long term behavior of the solutions? How do changes in s or X\ affect
the solutions?

(d) Do you expect your qualitative analysis would be similar for other production functions (as long
as they satisfy the assumptions on f given earlier)? Explain.

5. Balloon Science? Air is pumped into a spherical balloon at a constant rate of 12 cubic centimeters
per second.
(a) Find the differential equation for the volume v of the balloon.
(b) Find the differential equation for the radius r of the balloon.
(c) Solve the differential equations from (a) and (b). You can solve them individually, or you can use

the solution of one to find the solution of the other.

(The volume of a sphere with radius r is 4773/3.)



