Homework Assignment 3

Due Friday, November 7.
For Questions 1-5, find the real-valued general solution, and then solve the given initial value problem.

1. $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}1 & -1 \\ -6 & -4\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
2. $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-4 & -1 \\ -2 & -3\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
3. $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}2 / 3 & 4 \\ -4 & 2 / 3\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$
4. $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}0 & 3 \\ -3 & 0\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$
5. $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$
6. Suppose that for some matrix $A, A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$, and $A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}$, and $\lambda_{1} \neq \lambda_{2}$. Show that \vec{v}_{1} and \vec{v}_{2} are linearly independent. (In other words, eigenvectors associated with different eigenvalues are always linearly independent.)
Hint: Consider the equation

$$
\begin{equation*}
k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

To show that \vec{v}_{1} and \vec{v}_{2} are linearly independent, we must show that the only solution to this equation is $k_{1}=k_{2}=0$. As a start, consider multiplying both sides of (1) by A to get a new equation. Then consider multiplying (1) by, say, λ_{1} to get another new equation. Now subtract one of the new equations from the other new equation, and see where that leads.
7. Suppose $\overrightarrow{\mathbf{x}}_{1}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ and $\overrightarrow{\mathbf{x}}_{2}(t)=\left[\begin{array}{l}u(t) \\ v(t)\end{array}\right]$ are solutions to the linear system

$$
\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}, \quad \text { where } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Define the Wronskian of $\overrightarrow{\mathbf{x}}_{1}$ and $\overrightarrow{\mathbf{x}}_{2}$ to be

$$
W(t)=x(t) v(t)-u(t) y(t)
$$

(It is the determinant of the matrix whose columns are $\overrightarrow{\mathbf{x}}_{1}$ and $\overrightarrow{\mathbf{x}}_{2}$.)
(a) Find $d W / d t$.
(b) Show that

$$
\frac{d W}{d t}=(a+d) W(t)
$$

Hint: use the fact that $\overrightarrow{\mathbf{x}}_{1}(t)$ and $\overrightarrow{\mathbf{x}}_{2}(t)$ solve the linear system.
(c) Find the solution to the first order differential equation $d W / d t=(a+d) W(t)$.
(d) Use (c) to show that if the vectors $\overrightarrow{\mathbf{x}}_{1}(0)$ and $\overrightarrow{\mathbf{x}}_{2}(0)$ are linearly independent, then $\overrightarrow{\mathbf{x}}_{1}(t)$ and $\overrightarrow{\mathbf{x}}_{2}(t)$ are linearly independent for all t.
8. Let

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]
$$

Show that a is the only eigenvalue of A, and that every nonzero vector is an eigenvector.
9. Let

$$
A=\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]
$$

Find the eigenvalues and eigenvector of A. (This is a useful result to remember.)
10. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & 0
\end{array}\right]
$$

Find the eigenvalues and eigenvector of A. (Compare this to the previous problem.)

