Homework Assignment 3

Due Friday, November 7.

For Questions 1-5, find the real-valued general solution, and then solve the given initial value problem.

1.
$$\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ -6 & -4 \end{bmatrix} \vec{\mathbf{x}}, \quad \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

2. $\vec{\mathbf{x}}' = \begin{bmatrix} -4 & -1 \\ -2 & -3 \end{bmatrix} \vec{\mathbf{x}}, \quad \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
3. $\vec{\mathbf{x}}' = \begin{bmatrix} 2/3 & 4 \\ -4 & 2/3 \end{bmatrix} \vec{\mathbf{x}}, \quad \vec{\mathbf{x}}(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$
4. $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} \vec{\mathbf{x}}, \quad \vec{\mathbf{x}}(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$
5. $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} \vec{\mathbf{x}}, \quad \vec{\mathbf{x}}(0) = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

6. Suppose that for some matrix A, $A\vec{v}_1 = \lambda_1\vec{v}_1$, and $A\vec{v}_2 = \lambda_2\vec{v}_2$, and $\lambda_1 \neq \lambda_2$. Show that \vec{v}_1 and \vec{v}_2 are linearly independent. (In other words, eigenvectors associated with *different* eigenvalues are always linearly independent.)

Hint: Consider the equation

$$k_1 \vec{v}_1 + k_2 \vec{v}_2 = \vec{0}. \tag{1}$$

To show that \vec{v}_1 and \vec{v}_2 are linearly independent, we must show that the only solution to this equation is $k_1 = k_2 = 0$. As a start, consider multiplying both sides of (1) by A to get a new equation. Then consider multiplying (1) by, say, λ_1 to get another new equation. Now subtract one of the new equations from the other new equation, and see where that leads.

7. Suppose $\vec{\mathbf{x}}_1(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ and $\vec{\mathbf{x}}_2(t) = \begin{bmatrix} u(t) \\ v(t) \end{bmatrix}$ are solutions to the linear system $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \quad \text{where}A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$

Define the *Wronskian* of $\vec{\mathbf{x}}_1$ and $\vec{\mathbf{x}}_2$ to be

$$W(t) = x(t)v(t) - u(t)y(t).$$

(It is the determinant of the matrix whose columns are $\vec{\mathbf{x}}_1$ and $\vec{\mathbf{x}}_2$.)

- (a) Find dW/dt.
- (b) Show that

$$\frac{dW}{dt} = (a+d)W(t).$$

Hint: use the fact that $\vec{\mathbf{x}}_1(t)$ and $\vec{\mathbf{x}}_2(t)$ solve the linear system.

- (c) Find the solution to the first order differential equation dW/dt = (a + d)W(t).
- (d) Use (c) to show that if the vectors $\vec{\mathbf{x}}_1(0)$ and $\vec{\mathbf{x}}_2(0)$ are linearly independent, then $\vec{\mathbf{x}}_1(t)$ and $\vec{\mathbf{x}}_2(t)$ are linearly independent for all t.
- 8. Let

$$A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}.$$

Show that a is the only eigenvalue of A, and that *every* nonzero vector is an eigenvector.

9. Let

$$A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}.$$

Find the eigenvalues and eigenvector of A. (This is a useful result to remember.)

10. Let

$$A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}.$$

Find the eigenvalues and eigenvector of A. (Compare this to the previous problem.)